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The one-particle density matrix in the coordinate representation is calculated for the ideal Fermi gas
in general D dimensions and a slow decay form of off-diagonal long-range order (ODLRO) is demon-
strated therein. The pair distribution function and the structure factor are deduced from the one-
particle density matrix. Their deviations from the classical values are viewed as a measure of the quan-
tum phase, manifesting the existence of ODLRO. An upper bound on the structure factor due to Price
[Phys. Rev. 94, 257 (1954)] is tested with our general solution and is also applied to the interacting elec-

tron gas.

PACS number(s): 05.30.Fk

L. INTRODUCTION

Some years ago, in an illuminating paper, Luban and
Revzen showed a new way of viewing the origin of the
phase transition in the ideal Bose gas [1]. It is the ex-
istence of off-diagonal long-range order (ODLRO) in the
one-particle density matrix p, in the coordinate represen-
tation, to which the singular behavior of the thermo-
dynamic functions can be traced. In particular, the onset
of this order can account for the divergences of Cp and
kr at T =T,, where the condensate fraction is still strict-
ly zero and also at T' < T,, where the condensed fraction
is finite. Luban and Revzen were applying the concept
due to Yang [2] to the ideal Bose gas by making several
of the thermodynamic functions reveal therein the ex-
istence or absence of ODLRO.

Yang’s idea was that in quantum many-body systems
such as the ideal Bose gas there is a new thermodynamic
phase of quantum origin. Thermodynamic functions
describing it can be shown to manifest the existence of
ODLRO. This order arises from the symmetries of
many-body wave functions. Hence, it can quantitatively
define a quantum regime. The order, much like other or-
ders, e.g., magnetization, can vanish with thermal fluc-
tuations. Yang’s concept has now become an important
means with which to study macroscopic properties of
quantum origin in many-body systems [3].

If the existence of ODLRO means the appearance of a
new thermodynamic phase, microscopic correlation func-
tions like the pair distribution function cannot be imper-
vious to its manifestation. Any change in them in going
from the quantum to the classical regime must be attri-
butable to the existence or absence of ODLRO. Indeed
the work of Luban and Revzen suggests as much. They
show for the ideal Bose gas that the one-particle density
matrix entirely determines the behavior of the pair distri-
bution function and that the large-distance behavior
changes strikingly as T crosses T,. The existence of
ODLRO could perhaps be even more effectively observed
in the structure factor, which is sensitive to the large-
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distance behavior in the pair distribution function.

The ideal Fermi gas does not have a phase transition
and usually only its ground state is of any interest. One
might therefore think that Yang’s concept is not useful
here. However, the Fermi gas in the ground state
behaves nonclassically also because of the symmetry of its
wave function. That is, there is a corresponding new
phase of quantum origin which we contend implies the
existence of some form of ODLRO. This order in a Fer-
mi gas evidently cannot be finite at large distances there
being no condensation as in the Bose gas. Nevertheless,
in our view, ODLRO can still be said to exist if it van-
ishes slowly with the distance. It exists if it is manifested
in, e.g., the structure factor by being significantly
different from its classical value. To describe the fermion
thermodynamic phase, we propose to extend Yang’s orig-
inal concept. This extended version is not really novel.
Luban and Revzen have already shown that the onset of
a phase transition in the Bose gas is signaled by a slow de-
cay of ODLRO.

The ideal Fermi gas has been historically an important
model for the conduction electrons in metals. Many of
its ground state properties in D =3 (D dimensions) are
exhaustively described in standard texts, but seldom from
the point of view of ODLRO in p,. In these treatments it
is customary to obtain, for example, the structure factor
S (k) first, where k is the wave vector, and then by a
Fourier transform the pair distribution function g(7),
where 7 is the separation distance of a pair of identical
particles. Luban and Revzen thus suggest an alternative
way of obtaining g (r) first, itself obtained from p;, from
which then S (k) afterward. One practical advantage of
this approach is that p; can be obtained in any value of
D, hence g(r) and also S (k). An exact knowledge of the
structure factor is of general theoretical interest. There
is, for example, a bound on the structure factor due to
Price [4]. Our D-dimensional solution can provide a
rigorous test for the validity of this bound perhaps for the
first time. Relevance of studying thermodynamic func-
tions in D dimensions has been addressed elsewhere [5,6].
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II. ONE-PARTICLE DENSITY MATRIX

We consider a system of N ideal Fermi particles in a
D-dimensional volume ¥V in thermal equilibrium. Follow-
ing Luban and Revzen we introduce the Fermi version of
the one-particle density matrix in the coordinate repre-
sentation,

pir )= (PLy,(r)) (1

where the angular brackets mean the grand canonical en-
semble average. Here 9,(r) denotes a spin-o field opera-
tor at position r, satisfying the Fermi commutation rela-
tions:

We shall assume that our system is translationally invari-
ant, e.g., py(r,r')=p,(|r—r'|). Writing

Ao >

¢a(r)= V—l/ZZ eik r
k
etc., we can express (1) as

ﬁl(r)Epl(r)/p=N_12<h‘k0>eik", (3)
ko

where p=N/V and f;,= a,wa,“7 the number operator.
Except for the spin sum, the one-particle density matrix
(3) has the same form as that for the ideal Bose particles.

L =8(r — )6 When T =0, {f,)=0(kr—]|k|), a step function,
[$o(r), Yo (r)] =8(r =r")8, (22) where kg is the Fermi wave vector. One can evaluate (3)
[, (P, P r) e =[5 (r), ¥l .(r)].=0. (2b)  in the ground state as follows [6]. If D >3,
|
. _ 2 2 (D—1)/2 D—1 T .. D—2pn, ikrcos®
pi(r) an? | | T =1/2) f k? 7 'dk fo sin” ~*Be de
— 2I(D /2+1) L, p—1 T D —20n  ikx cosd
Var((D —1)/2) Joreman [ Jsin®26e e, @

where I is the gamma function,
which we shall denote as Ij, ,(x), is now dimensionless.
Using the integral representation of the Bessel function

(z/2)

JV(Z)____\/—I‘(v—i-‘)

f sin2¥6 cos(z cos0)d 6 ,

we can express I, ,(x) as follows. Writing m =D /2,

x =rkp. We have used kf/p=22"'#P/>I'(D /2+1). The second double integral,

(5)

I,(x)=VaT(m —%)(2/x)”'“‘folk'"Jm_1(kx)dk=\/7r2’"_1r‘(m —LIx M, (%), (6)

where we have used the relation f ot 'Jy—1(t)dt =z"J (z). Hence, together
pi(rnN=2"T'(m +1)x""J,(x), m=0,1/2,1,3/2,... (7a)
=g~ V2mHtr(m +1)x 25 (x), m=1/2,3/2,..., (7b)

where x =rkg.

We note that although our original expression (4) is
valid if D =3, our final result (7a) is valid for any non-
negative values of D by virtue of analytic continuation.
In Table I we have listed p,(7) in several low dimensions.
Evidently there are two families, D even and D odd.
When r— o, the nonoscillatory part of the density ma-
trix vanishes as » 2727172, This is a slow decay [7],
which according to our view, implies the existence of
ODLRO in p,(r). We shall see that the pair distribution

TABLE 1. Normalized one-particle density matrix in D di-
mensions. x =rkp.
D ﬁl(x) D ﬁ](x)
0 Jo(x) 1 Jo(x)
2 2x "M (x) 3 3x 7Y (x)
4 8x ~2J,(x) 5 15x ~2j,(x)

r

function and the structure factor for the ideal Fermi gas
in the ground state, in particular their deviations from
the classical values, result entirely from this density ma-
trix just as Luban and Revzen have shown for the ideal
Bose gas.

III. PAIR DISTRIBUTION FUNCTION

The pair distribution function g(rr’), a two-particle
density matrix in the coordinate representation, has the
following standard definition:

g(r,r")

=p2 3 (YLl (r W (r Y, (1) (8a)

=N"*3 3 (a},

oo’ pgk

qa g —ko'@ p+ka>eik.(r_r') . (8b)
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It is defined so that g(|r —#'|— o )=1 in this transla-
tionally invariant system.

For the ideal Fermi gas, just as for the ideal Bose
gas, nonzero contributions to the sum in (8b) arise
only if k=0 and k=p—q+#0. Note that (ﬁpaﬁqg')
=(A,, )Ry, ) if p7q or 70" and also {(#,,) =(A,,).
Using the above properties one an show that

g(N=1—1[p("]? ©)

which is valid at any temperature and in any D [8]. This
simple relation (9) is useful. For example, g(r =0)=1,a
well-known result. Also it gives an upper bound on g (r):
g(r)<1. Equation (9) may be compared with say, g 2(#),
the pair distribution function for the ideal Bose gas at
T > T, given by Luban and Revzen

gir=1+[p2n}?, (10)

which gives a lower bond g®(r)>1 [9(a)] and also
g2(r =0)=2, somewhat less well known [9(b)].

The inequalities, g(#) <1 and g®(r)>1, for the ideal
Fermi and Bose gases, respectively, are interesting. First
of all, in the classical limit, statistics cannot play any role,
ie., gf(r)=gB(r)=gr)=1, where g<(r) refers to the
classical ideal gas. Thus, p(7) must vanish in the classi-
cal limit as one can readily show [10]. The departure
from the classical value is sometimes attributed to the ex-
istence of a quasiforce, which acts repulsive for Fermi
particles and attractive for Bose particles [11]. In actual
fact, it is the existence of ODLRO in the one-particle
density matrix to which any departure from the classical
behavior must be attributed.

Using (7a) in (9), the pair distribution function in D at
T =0 is explicitly

g(r)=l—%[cx_"'Jm(x)]2 ,

where m =D /2, x =rkg, and ¢ =2"I'(m +1). We shall
note a few elementary properties of g (r) in D:

(11)

J

2IN(m +1)
Sk)—1=——=2"T2/
(k) Val(m —1/2) Yo

where k now is in units of kr. Using (5) we can reduce
(13) to

__2"T(m+1)

km-—l (14)

f0°°x ~mJ2 (x),, _y(x)dx .

The integral may be evaluated by first reducing the
squared Bessel function by means of Neumann’s integral
[14]:

1 T
Jf,(z)=;fo J2,(2z cosy)dy . (15)

© o 0 if [a|>b],
L 7x# T (ax0d (bx)dx =

*® —172 m so2m—2
)f dx x Jm(x)fo d@sin 0 cos(kx cosf) ,

2u~v+lap(b2_02)v—,u—1

bT(v—p)
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. _ 1 xz 4

i. g(r—0) 2 + 2D +2) +0(x*).

ii. 3g(r)/dr=ax"2"J, (x),, +,(x), a=c?k;. Hence,
og(r—0)/dr=kgpr /(D +2), which also follows from (i).

iii. Since the Bessel functions are bounded, i.e.,
[J,(x)|<1ifm >0,g(r— o )=1.

iv. The asymptotic behavior of g (r) is

glr—ow)—1=—7"lc2x "2 lcos?[x —m(D +1)/4] .

v. $=g(r)=1.

IV. STRUCTURE FACTOR IN D DIMENSIONS

The structure factor for the ideal Fermi gas at T =0 is
known in D =1-3, usually obtained by S(k)ZN_lzpa,
with the restriction |p|<kp and |p+k|>k; [12]. If
|k| <2kp, S(k) is the volume of the Fermi sphere,
symmetrically cut off at the top and the bottom to the
depth k /2 from the center of its sphere. A dependence
on k and D results from the cutoff. If |k|>2kp, it is that
of the full uncut Fermi sphere, losing the k and D depen-
dence as a result. A similar loss of the kK and D depen-
dence takes place if S (k) is imposed the classical limit
[13]. The coordinate space origin of this discontinuity at
2ky is curious since the pair distribution function is a
completely smooth function of the separation distance.
Evidently it stems from oscillations of the Bessel func-
tion.

The structure factor S(k) is related to the pair distri-
bution function g(r), hence, to p,(r), through the well-
known formula: If k0,

S(k)—1=p [ dPre " T[g(r)—1] (12a)
=—p/2[dPre " p(n]?. (12b)
Substituting (7a) for g;(r) in (12b) we obtain
(13)
[
Thus,
= [®,—my2
0= [ "x "I (0, - (kx)dx
_1 prn
=— [Py, (16)
where
Pm(¢)=fo""x“'"J,,,_l(kx)Jz,,,(zx cosp)dx . (17)

Equation (17) is the form of a discontinuous Bessel in-
tegral: Forv>pu> —1,

(18)
if |6 > |al .
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Hence, we choose a=k/2=q, b=cosy, u=m —1,
v=2m. Then, u—v+1=—m and the -condition
v>u> —1 is satisfied if m >0 (although m =0 may also
be satisfied by analytic continuation). Using the above
stated choice we can now evaluate (17): () If ¢ >1 (i.e.,
k >2kp), then g > |cosy| for ¥=(0,7) and P,,(3)=0 for
m >0. Hence, S(g)=1. (ii) if ¢ <1, g <|cosy| for the in-
tervals ¥=(0,v,) and (4¢,,7), where ¢¥,=w—1; and

m—

77'1"(m+1)f (1=g%/cosy)"dy 1

Q=
and
_1=_2 Yoo 2 2.5\m
S@—1=—= [ "(1—g*/cos™y)"d . (20)

The RHS of (20) is in the form of an integral represen-
tation of the hypergeometric function (hgf) [15]: If

¥, =cos " !q. Hence, if g <1 (i.e., k <2ky), c>b>0,
|
T rtp— c—b—11__.\—a
Fabez)= g f 2 (1—1) (1—zt)"%t . @1)
For (20) the condition ¢ > b >0 is equivalent to m > 0. Hence, for g < 1, where again g =k /2kp,
S(g)=1—[C(m +1)/Val(m +3/2))(1—¢>)" *V2F(m +1/2,1/2,m +3/2,1—q%) . (22)

The above result is useful for studying the behavior of S (g) near ¢ =1, but not near g =0.
To obtain such an expression we consider the following linear transformation of the hgf [15]: If ¢ —a — b+ negative

integers,

F(abcz)=[T'(c)I'(¢c —a —b)/I'(c —a)T'(c —b)]F(a,b,a +b—c +1,1—2)
+[L(e)T(a +b —c)/T(a)T(B)(1—2) "¢~ %F(¢c —a,c —a —b +1,1—2) . (23)

For the parameters of the hgf of (22), c —a —b=1. Hence,

S(g)=[2l(m +1)/VaT(m +1/2)1g(1—¢®)" *12F(m +1,1,3/2,4%) . (24)

The above still contains (1—g2). To remove it we introduce one more transformation, this one due to Euler [15]: If ¢

negative integers and |z| <1,

F(abez)=(1—2z)° " °"°F(c —a,c —b,c,z) . (25)
Identifying a =, b =1 —m, ¢ =% we obtain finally that for g <1
S(g)=[2T(m +1)/V7l(m +1/2)1gF(1/2—m,1/2,3/2,q*)=qF (1 —m,1,3,q*)/F(1—m,1,3,1). (26)
[
Observe that m appears in but one parameter of the hgf S, (g—0)=27"1Q,q . (29)

of (26). It makes it simple to deduce a dimensional rela-
tionship. Also, if m =D /2 is a half integer (D odd), the
hgf is a polynomial in g2. If m is an integer (D even), it is
a function of g2 [16].

V.BEHAVIOR OF STRUCTURE FACTOR

We shall now show a few general features of the struc-
ture factor S,,(g) as a function of both ¢ =k /2kr and
m =D /2. For a fixed m, the behavior near ¢ =0 and 1 is
interesting. For g —0, the useful form is (26), which we
write as

Sn(@)=2r"1Q,9F(1—m,L,3,4%), 27
where

Q,=T(Hr(m+1)/T(m+1) (28a)

=[m/(m—HIQ,, .y, mFL. (28b)

We list a few Q,’s: Qy=1, Q,=2, Q,=%; Q,,=n/2,

03/2= 317'/4, 05/2= 157 /16.
For ¢ —0 one may replace the hgf in (27) by unity to
order o (,qz). Hence, immediately,

Thus, S,,(q) is linear in g near the origin and the slope is
positive, depending on D. This is very different from the
behavior in the ideal Bose gas [17].

To study the behavior near ¢ =1 we turn to (22), which
to the leading order can be written as

Splg—1)=1—7" m+1)7'Q,(1—g)"*1/2. (30)
Hence,
3S,,(g—1)/3¢g=27"'Q,,(1—g*)m 12
zﬂ—x(l_qz)—l/z , m=0,
=I1, m=1}, (31)

0, m>1.

Since S,,(g—0)=0and S,,(¢—1)=1, and also, if m >0,
the derivatives are finite positive and continuous on the
interval of g, we can state the bounds: 0<S,,(g)<1 on
g =(0,1). In Appendix A our solution for S,,(q) is fur-
ther compared with an upper bound given by Price [4].
Next, for a fixed g, we look for a recurrence relation in
m for S,,(g) by considering (27). The prefactor 2, i
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simply related to Q,, _; [see (28b)]. Also the hgf in (27)
has a very simple contiguous relation because of the
values of two of its parameters (differing by one) [15]. An
applicable contiguous relation for F (abcz) is

(b —a)F (abcz)=—aF (a + 1bcz)+bF(ab +1cz) , (32)

where F(ab +1cz)=(1—z)"°% if b +1=¢. Turning to
(27), let F,,=F(1—m,L,3,4%). If the parameters of the
hgf in (27) are applied to the above contiguous relation
we obtain

mF,, =(m —L)F, _+1(1—¢g*)m~172 (33)
Hence, for m =1,
S, (g)=27"1Q,,qF,,
=Spoil@) 7m0, g (1=g?" 71,
0<g<1. (34

The second term on the RHS of (34) is a polynomial if m
is a half integer. It is of a square root if m is an integer.

According to (34), it is a relationship between m and
m —1. That is, the relationship is between even-
numbered dimensions or odd-numbered dimensions, nev-
er between even and odd numbered dimensions, some-
times known as an even-odd effect. One can trace the ori-
gin of this even-odd effect observed here to the D-
dimensional volume integration, which has a given D /2,
not D, as its natural parameter. The even-odd effect is
manifested in S,,(g) through two independent ‘“‘seeds:”
Solg)=2m"'gF(L,1,2 ¢*)=27"'sin"'q and S, ,,(q9)=¢
for D’s even and odd, respectively. Using these two seeds
as boundary values, we can generate S,,(g) for any value
of D. A few of them are listed in Table II. Finally, there
is a simple inequality, S,,(q)=S,, _,(q), 0<g <1, for D’s
even or odd separately, owing to the fact that he second
term on the RHS of (34) is non-negative.

VI. CONCLUDING REMARKS

The effect of our form of ODLRO is particularly easy
to see in the ground state of the ideal Fermi gas, for
which g(r)—1 and S(k)—1 are quantitative measures of
the quantum phase in the coordinate and momentum
spaces, respectively. The relationship between the two
measures is not obvious. For example, if k > 2k, there is
no effect of ODLRO in the momentum space. Here all
the scattering takes place outside the Fermi sphere,

TABLE II. Structure factor in D dimensions. ¢ =k /2kp <1.

D S(q)

0 2/m[sin "q]

2 2/7[sin"'g+q(1—g*»"?]

4 2/m{sin"'g+q(1—¢2)'"[1+2/3(1—¢?)]}
1 q

3 g[1+1/2(1—g?)]

5 q[1+1/2(1—g*)+3/8(1—g*)]

“washing out” Fermi statistics. No analogous behavior
exists in finite regions of the coordinate space. For the
nonideal Fermi gas it has been postulated that
g(r=0)=Ak*1—S(k)] as k— «, where A contains
the coupling constant. Here S(k)—1 is not simply a
measure of quantum phase since S (k)71 if the nonideal
gas is classical.

We have shown that for the ideal Fermi gas,
g(r=0)70 and g'(r =0)=0. [For the nonideal Fermi
gas, g(r =0) and g'(r =0) are believed to be a strong
function of r,.] Also, g(r— 0 )—1~r"2~1 a nonex-
ponential decay. This asymptotic form of the pair corre-
lation function appears mainly responsible for the linear
behavior of S(k—0) in k. For k <2ky we have found
that S (k,D /2)=S(k,(D —2)/2)+ B, where B is a simple
function of k and D. Thus, like the susceptibility [6], the
structure factor for the ideal Fermi gas is composed of
two distinct families, D even and D odd. They never mix.
It is also interesting to note that the structure factor can
be given as a function of either (k /2)? or 1—(k /2)?, both
expressible in integral forms of the hgf.

Evidently the effect of our form of ODLRO is also
present in dynamic quantities like the dynamic structure
factor S(k,w) since the frequency @ can only act to
translate the wave vector k [13]. The effect should be
seen in these quantities for the nonideal Fermi gas and it
should persist in them in low temperatures. An explicit
demonstration of ODLRO in these problems recently
studied [18—-21] would appear to be of interest.
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APPENDIX A: STRUCTURE FACTOR
AND PRICE’S INEQUALITY

Some years ago, Price [4] showed that the structure
factor S(k) at T=0 is bounded from above as
S (k)<S*(k), where S“(k —0)=k /2mc, c the speed of
sound, m now the mass of the electron, and #=1. One
can also show that S*%(k — « )=1. The upper bound for
k —0 has had some use in assessing the phonon spectrum
obtained in approximate theories of Bose fluids [22,23].
To our knowledge, it has otherwise never been rigorously
tested in models. Since the bound is based only on cer-
tain dynamic sum rules, it is also applicable to the struc-
ture factors of Fermi systems. In fact, the structure factor
for the D-dimensional electron gas in the ground state ob-
tained here in Sec. IV provides perhaps the simplest pos-
sible nontrivial test.

To test the upper bound for k —0 we first evaluate the
speed of sound c for the electron gas in the ground state
from the standard relation mc?=2pe’+p’e”’, where
¢'=3e/dp and e=E,/N=(1+2/D) ‘ez, E, the ground
state energy, and g€p the Fermi energy. Since
g'=(2/D)p " 'e we deduce that mc =ky/V'D. Hence,
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S“(k—0)=(D/4)""*k /ky . (A1)
Now from Eq. (29) we have the exact result
S (k—0)
=[0(D/2+1)/VaT(D/2+ Dk /kp ,  (A2)

with which to compare. Therefore, according to Price,
the upper bound for kK —0 as applied to the electron gas
means

20(D/2+1)/V7D T(D/2+ 1)1 . (A3)

It does not seem possible to further reduce the LHS of
(A3) nor to prove the inequality generally. But it is easy
to see it hold D-by-D: If D =1, it is an equality. If D =2,
it gives an inequality correctly. If D — o, the LHS of
(A3) may be given as

Jim 20(D/2+1)/VaD T(D /2+1)=V2/m<1. (A4)

The upper bound for k — o is trivially satisfied as an
equality since S (k >2kp)=1. It is also possible to test
the bound for intermediate k(0 <k <2ky) from the gen-
eral solution [4(b)]

SU(k)=[(k%/4mp)¥(k)]'/?, (A5)

where X(k) is the reduced susceptibility, i.e.,
X(k)=pBx(k)/V, where x(k)=(py,p; ) is the Kubo scalar
product of the density operator p;, B=1/kgT and V
volume. Note that at T =0, }(k—0)=03p/0dep
=Dp/2ep=p/mc?. Since the reduced susceptibility for
the D-dimensional electron gas in the ground state is
known [6], the upper bound (AS5) can be stated explicitly.
Although to test the bound generally is complicated, it is
straightforward to do so D-by-D as before: If, for exam-
plee, D=1, ¥(k)>p/2ep for 0<k<2kgp. Hence,
S(k)=k /2kp <S**k) for 0<k <2kp, ie., no longer
equal as was when k—O0. If D=2, y(k)=p/ep for
0<k <2kp. Hence, S“’(k)=V2q, where q=k/2kg.

One can see that S(g)=2/m[sin”'q+q(1—g?)'?]
<V2 q for 0<g < 1. The inequality may be demonstrat-
ed similarly in other values of D.

We shall look at the origin of the equality which exists
when k—0 if D =1, as well as when k— o in all D’s.
Price’s inequality derives from certain sum rules with
respect to the dynamic structure factor S(k,w) where
is the frequency. Evidently an equality is attained be-
cause the dynamic structure factor assumes some special
form in these domains. The dynamic structure factor in
D =1 for k <kp is constant and nonzero only for an in-
terval, whose width vanishes faster than kK —0. Indeed
this form gives an equality. When k — oo, the dynamic
structure factor in all D’s become sharply peaked about
o=k?/2m, also giving an equality [4(b)].

Finally, the upper bound for the structure factor of the
interacting electron gas can also be obtained from (AS5).

In the long wavelength limit, to first order
¥(k—0)=wv; !, where v, is the Fourier transform of the
Coulomb interaction potential. In D =3, where
v, =4me?’/k?, we obtain to first order

Sk —0)=k*/2mw, , (A6)

where 0, = (4mpe’/m)'/?

» is the plasma frequency. Thus,
the structure factor can no longer be linear in k as in the
ideal gas. In fact, (A6) is the structure factor obtained
when the excitations are limited only to long-wavelength
plasmons [24]. In D =2, where v, =2me?/k? (i.e., log
potential), the same upper bound is obtained with
®,=(2mpe*/m)'%. In the so-called quasi 2D, where
Vi =2me?/k, again (A6) is obtained, but now
w, =(21rpe2k /m)'”?, which is k dependent. Asin D =3,
the structure factor contributed by the long-wavelength
plasmons alone can attain the upper bound [25], but the
single-particle excitations will lower it below the upper
bound [26]. When there are only the plasmons, the dy-
namic structure factor is effectively in the form of a §
function which explains the equality just as when k — oo.
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